motion of the ocean
With the exception of tidal energy, our focus thus far has been on land-based energy sources. Meanwhile, the ocean absorbs a prodigious fraction of the Sun’s incident energy, creating thermal gradients, currents, and waves whipped up by winds. Let’s put some scales on the energetics of these sources and see if we may turn to them for help. We’ve got our three boxes ready: abundant, potent, and niche (puny). Time to do some sorting! Thermal Gradients Wherever there is a thermal gradient, our eyes light up because we can create a heat flow across the gradient and capture some fraction of the energy flow to do useful work. This is called a heat engine , the efficiency of which is capped by the theoretical maximum ( T h − T c )/ T h , where “h” and “c” subscripts refer to absolute temperatures of the hot and cold reservoirs, respectively. In the ocean, we are rather limited in how much gradient is available. The surface does not tend to exceed 30°C (303 K), while the depths cannot get