Top 10 Places to Find Alien Life

":" C H A N C E  TO  F I N D  A L I E N 'S  L I F E ":"

"You can see here the small planets dominate the picture," he casually said while referring to a graph depicting the different exoplanet sizes and their number as of July 2010.

Exo-slide
Although he refers to these exoplanets as "candidate" Earth-like worlds, Sasselov goes on to talk about the statistical prevalence of small planets throughout the Milky Way.
Before Kepler, only the larger exoplanets could be seen. This is fairly obvious; large gas giants are easier to detect over the great interstellar distances. The highly sensitive Kepler has now leveled the playing field, indicating that there are many more exoplanets twice the size of Earth and smaller.
Undoubtedly, this is huge news. If officially confirmed by NASA -- and only then would it be advisable to pop the champagne corks -- the discovery of dozens of worlds of comparable size to Earth is historic.

Although it has largely been assumed to be the case, Kepler will have proven that our planet is not unique in our galaxy. If there are so many Earth-like worlds out there, will any be home to extraterrestrial life?
Speculation about the existence of alien life will have another strong case to suggest that if planets like Earth are not rare, than perhaps "life as we know it" is ubiquitous throughout the Milky Way.
A screen grab from Dimitar Sasselov's TED presentation. Note the bar labeled "like Earth."The unofficial "data leak" by Sasselov comes hot on the heels of some controversy that erupted last month over how Kepler data should be shared with the astronomical community. Data on 400 exoplanet candidates (presumably the same exoplanets presented in Sasselov's talk) were being withheld by the Kepler science team so they could publish news on any important discoveries first.
As our own Nicole Gugliucci pointed out in her fascinating June 15 article: "The 400 candidates are being withheld by the Kepler team so that they can do follow-up work and publish their results. This is generally considered a fair system where the principal investigators have the data for a set amount of time before having to make it public."
Usually, NASA data is considered proprietary for a year after the data are gathered. This allows the mission scientists to have first dibs on the data they've invested a lot of time, energy and money collecting. After this time, other research groups can have access.
This may be common practice, but for a mission that's looking for worlds like our own, there's a high degree of impatience for the data to become public.
Although these Kepler results were supposed to remain secret until February 2011, Sasselov has given the world an unofficial glimpse into the possible discovery of Earth-like extra-solar planets. But by the looks of things, we're not talking about one or two "second Earths." We could be looking at a galaxy with a dominance of small rocky worlds.
"The statistical result is loud and clear. And the statistical result is that planets like our own Earth are out there. Our Milky Way galaxy is rich in these kinds of planets." --Dimitar Sasselov

There's a bittersweet feeling to this announcement. Although the news is groundbreaking, it's a shame that it was leaked during a TED talk rather than being released via official channels from the whole Kepler team.
Keith Cowing, of NASAWatch.com, goes one step further, pointing out that it's wrong for this news to be announced in the U.K., only for the news to finally break weeks later.
"What is really annoying is that the Kepler folks were complaining about releasing information since they wanted more time to analyze it before making any announcements," Cowing adds. "And then the project's Co-I goes off and spills the beans before an exclusive audience -- offshore. We only find out about it when the video gets quietly posted weeks later."
Although this announcement could have been handled much better (personally, I think it might be best until we hear what NASA has to say), all indications are that we are about to have our eyes opened to the possibility that Earth is no longer a unique world. It belongs to a common type of planet found throughout our galaxy.

1. Mars Surface Gives up Signs of Water

In 2008, NASA's Mars Phoenix lander touched down on the Red Planet to confirm the presence of water and seek out signs of organic compounds.
Eight years before, the Mars Global Surveyor spotted what appeared to be gullies carved into the landscape by flowing water. More recently, the Mars Expedition Rovers have uncovered minerals that also indicated the presence of ancient water. But proof of modern-day water was illusive.
Then Phoenix, planted on the ground near the North Pole, did some digging for samples to analyze. During one dig, the onboard cameras spotted a white powder in the freshly dug soil. In comparison images taken over the coming days, the powder slowly vanished. After intense analysis, the white powder was confirmed as water ice.
This discovery not only confirmed the presence of water on the Red Planet, it reenergized the hope that some kind of microbial life might be using this water supply to survive.

2. Alien Planets Spotted Directly

The first alien planets -- called exoplanets -- were being detected in the early 1990s, but not directly. In 2000, astronomers detected a handful by looking for a star's "wobble," or a star's slight dimming as the exoplanet passed in front of it. Today we know of 400 exoplanets.
In 2008, astronomers using the Hubble Space Telescope and the infrared Keck and Gemini observatories in Hawaii announced that they had "seen" exoplanets orbiting distant stars. The two observatories had taken images of these alien worlds.
The Keck observation was the infrared detection of three exoplanets orbiting a star called HR8799, 150 light-years from Earth. Hubble spotted one massive exoplanet orbiting the star Fomalhaut, 25 light-years from Earth.
These finds pose a profound question: How long will it be until we spot an Earth-like world with an extraterrestrial civilization looking back at us?
 
3. Dark Matter Detected

n the summer of 2006, astronomers made an announcement that helped humans understand the cosmos a little better: They had direct evidence confirming the existence of dark matter -- even though they still can't say what exactly the stuff is.
The unprecedented evidence came from the careful weighing of gas and stars flung about in the head-on smash-up between two great clusters of galaxies in the Bullet Cluster.
Until then, the existence of dark matter was inferred by the fact that galaxies have only one-fifth of the visible matter needed to create the gravity that keeps them intact. So the rest must be invisible to telescopes: That unseen matter is "dark."
The observations of the Bullet Cluster, officially known as galaxy cluster 1E0657-56, did not explain what dark matter is. They did, however, give researchers hints that dark matter particles act a certain way, which they can build on.
-- Larry O'Hanlon
 
4. Eris Discovered; Pluto Demoted

on January 2005, Mike Brown and his team at Palomar Observatory, Calif. discovered 136199 Eris, a minor body that is 27 percent bigger than Pluto. Eris had trumped Pluto and become the 9th largest body known to orbit the sun.
In 2006, the International Astronomical Union (IAU) decided that the likelihood of finding more small rocky bodies in the outer solar system was so high that the definition "a planet" needed to be reconsidered. The end result: Pluto was reclassified as a dwarf planet and it acquired a "minor planet designator" in front of its name: "134340 Pluto."

WATCH VIDEO about Pluto's demotion to a minor planet.
Mike Brown's 2005 discovery of Eris was the trigger that changed the face of our solar system, defining the planets and adding Pluto to a growing family of dwarf planets.
 
5. Hubble Gets to Grips with Dark Energy

In 2002, the Hubble Space Telescope was upgraded with a new instrument, the Advanced Camera for Surveys, that revealed the presence of a mysterious force called "dark energy."

The camera was set up to help researchers understand why Type Ia supernovae were dimmer than expected. Hubble's observations of these supernovae discovered that they weren't dimmer because the stars were different (they should all explode with the same brightness). The only explanation was that the universe's expansion was unexpectedly and inexplicably speeding up. This accelerated expansion was making the light dim over vast cosmic distances.

Hubble's discovery led to a better understanding of what dark energy is -- an invisible force that opposes gravity, causing the universe's expansion to speed up.
WATCH VIDEO about Hubble's most recent upgrade.
 
6. Big Bang "Echo" Mapped for the First Time
 
In June 2001, NASA set out to find the ancient "echo" of the Big Bang by mapping the cosmic microwave background (CMB) radiation that buzzes like static throughout the cosmos, using the Wilkinson Microwave Anisotropy Probe (WMAP) .

When the universe was born, vast amounts of energy were unleashed, which eventually condensed into the stuff that makes up the mass of what we see today. The radiation that was created by the Big Bang still exists, but as faint microwaves.
By mapping slight variations in the CMB radiation, the probe has been able to precisely measure the age of the universe (13.73 billion years old) and work out that a huge 96 percent of the mass of the universe is made up of stuff we cannot see. Only 4 percent of the cosmic mass is held in the stars and galaxies we observe; the rest is held in "dark energy" and "dark matter."
 
7. A Supermassive Black Hole on Our Door step
 
There's a monster living in the center of our galaxy, 26,000 light-years from Earth. By 2008, astronomers tracking the behavior of stars orbiting an invisible point confirmed that the monster is a supermassive black hole called Sagittarius A*.

A lone star called "S2," with a very fast orbit, has been tracked since 1995 around this invisible point. In 2002, Rainer Schödel and his team at the Max Planck Institute for Extraterrestrial Physics announced that the only explanation for S2's fast orbit was that it was circling a very compact, massive object -- a supermassive black hole -- that was stopping the star from flinging out of its orbit into space.
In 2008, after S2 completed one 16-year orbit, it was confirmed that the star was orbiting a black hole with a gargantuan mass of approximately 4.3 million suns.
The confirmation of a supermassive black hole in the center of the Milky Way boosted the theory that most galaxies contain a supermassive black hole at their cores.
 
8. Organic Chemistry Collected from Comet's Tail
 
In 2004, the NASA Stardust mission chased after Comet Wild 2 to find out if the icy mass contained the building blocks for life, since meteorites found on Earth contained organic chemistry that originated from space. Sure enough, in August 2009, NASA announced that they had found samples of glycine -- an amino acid -- in Stardust's collection plates.



It didn't stop there, there's increasing evidence that exoplanets orbiting distant stars contain organic chemistry in their atmospheres.
In 2008, organic chemicals were detected in the disk surrounding a star called HR 4796A, 220 light-years from Earth. And most recently, NASA's Hubble and Spitzer space telescopes detected carbon dioxide, methane and water vapor in the atmosphere of an exoplanet called HD 209458b.


These discoveries, sparked by Stardust, have transformed our understanding about how life may have formed on Earth. They also give us a strong hint that life may not be unique to Earth; the universe appears to be manufacturing organic chemistry everywhere.

9. Moon Water Confirmed

India's Chandrayaan-1 satellite confirmed the presence of water on the moon in September 2009, building on flyby observations by other probes on their way elsewhere.



Although the lunar surface is still drier than Earth's driest desert, evidence of water is there, hinting at a solar wind interaction with the moon's surface that produces water and hydroxyl molecules.

It may not be an oasis up there, but future moon colonists could extract and purify the traces of water from the surface to use for drinking, food cultivation, oxygen and fuel. Or, our colonists could take a trek to the moon's poles to mine water from the deepest craters


On Oct. 9, 2009, NASA dropped a spent rocket into a crater to produce a 100-foot-wide hole. They found water there too. That rocket produced a massive plume of dust that was analyzed by the Lunar Reconnaissance Orbiter (LRO) and ground-based observatories. At least 25 gallons of water ice was detected in the plume.

10. Saturn Moon Titan Explored

On Jan. 14, 2005, the European Space Agency's Huygens probe dropped through Titan's atmosphere after a seven-year trek attached to NASA's Cassini spacecraft.

Before this mission, very little was known about Saturn's largest moon, and scientists were unsure whether Huygens would land on a rocky surface or in an ocean. Titan's thick atmosphere -- composed of primarily nitrogen and clouds of methane and ethane, about 50 percent thicker than our atmosphere -- signaled to scientists that Titan was similar to a young Earth.

Observations from the Huygens probe and Cassini spacecraft tell us that Titan and Earth share many features, such as sand dunes and lakes. But these features are heavily laced with organic molcules that could support life, leading researchers to speculate about Titan's potential to nurture microbes.

Comments

Popular posts from this blog

Contunious Deforestation in single turn off page

Different types of BMW accessories