Carbon Chemistry


                      
        


    

Carbon Chemistry

Scientists continued their search for commercial and industrial applications of the tiny elongated molecular structures known as carbon nanotubes. Discovered in 1991, nanotubes consist of carbon atoms bonded together into graphitelike sheets that are rolled into tubes 10,000 times thinner than a human hair. Their potential applications range from tiny wires in a new generation of ultrasmall computer chips to biological probes small enough to be implanted into individual cells. Many of those uses, however, require attaching other molecules to nanotubes to make nanotube derivatives. In general, methods for making small amounts of derivatives for laboratory experimentation have required high temperatures and other extreme conditions that would be too expensive for industrial-scale production.
During the year chemists from Rice University, Houston, Texas, and associates from the Russian Academy of Sciences, Moscow, described groundbreaking work that could simplify the production of nanotube derivatives. Rice's John Margrave, who led the team, reported that the key procedure involved fluorination of the nanotubes—i.e., attaching atoms of fluorine, the most chemically reactive element—an approach developed at Rice over the previous several years. Fluorination made it easier for nanotubes to undergo subsequent chemical reactions essential for developing commercial and industrial products. Among the derivatives reported by the researchers were hexyl, methoxy, and amido nanotubes; nanotube polymers similar to nylon; and hydrogen-bonded nylon analogs.

Comments

Popular posts from this blog

Different types of BMW accessories

Contunious Deforestation in single turn off page